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Abstract

We give new sharper estimations for the retraction constant in some Banach spaces.
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1. Introduction and notations

It is well known that Brouwer’s fixed point theorem has the following equivalent
form: If X is a finite-dimensional Banach space then there is no continuous
retraction from the closed unit ball B(X') onto the unit sphere S(X) (R is a retraction
if Rx = x for all xe S(X)). After some partial results (see [G-K] for an optimal list of
references), Benyamini and Sternfeld solved completely the problem of existence of
Lipschitzian retractions in the infinite-dimensional case by proving the following
result:

Theorem 1 (Benyamini and Sternfeld [B-S]). There exists an universal constant A
such that for every infinite-dimensional Banach space X there exists a Lipschitzian
retraction R from the unit ball B(X) onto the unit sphere S(X) with Lipschitz constant
less than A"
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This theorem suggests some quantitative problems. First of all it seems that no
significant lower and no upper bound for the best constant .#° that appears in
Theorem 1 is known. Given an infinite-dimensional Banach space X, the retraction
constant k(X)) is defined as the infimum of such k for which there exists a retraction
R:B(X)—-S(X)in Z(k), where £ (k) is the class of Lipschitz maps with constant k.
The only general result states that (see [G-K]): ko(X)>=3 for every space X. Some
estimations of ko(X) for some classical Banach space are available in the literature.
Here is a list of known results:

4<ko(l})<31.64 (see |
ko(co)<35.18 (see |
ko(L'[0,1])<9.43 (see [G —K]),
ko(C([a,b])) <23.31 (see |
4.55<ky(H)<64.25 (see [

The aim of this paper is to improve the known upper bounds for the retraction
constant ko(X) in some classical Banach spaces.

Let X be an infinite-dimensional Banach space X. For any 7: B(X)— B(X) the
minimal displacement n, of T is defined by

ny = inf{||x — Tx||: xe B(X)}.
The minimal displacement characteristic of X is

Yy(k)= sup nr.
TeZ(k)

This function, for k> 1, satisfies

O<yy(k)<1 ,l_
k
The study of this function started in [G1] where the upper bound is proved while
the positiveness of y is a consequence of the Benyamini—Sternfeld result. This and
other properties of the minimal displacement characteristic can be found in the book
of Kirk and Goebel [G-K] (see also [B1,B2]). We recall the definition of the radial
projection Pg from a Banach space X onto its unit ball B(X):

Py = {* if [Ix|I<1,
X)) =
: X <],

Pr is a Lipschitz function on X. The best Lipschitz constant for Pg is denoted by
h(X) and is called the radial constant of the space X. It is easily seen that
1<h(X)<2. It is also known that if dim X' >2, X is a Hilbert space if and only if
h(X) = 1. The exact values of #(X) in L, spaces are given in [F].
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Note the following useful fact: for elements x,ye X, if ||x||, ||y||=r>0 we have

(see for e.g. [B-G))
() - )|

x % ‘
[l {I¥l]

A subset W, with at least two points, of a normed space X is J-dispersed if
[|x — y|| > for each pair x,y of distinct points of W. A subset W of a normed
space X is proximinal if for each x€ X there exists an element w(x)e W such that
[|x — w(x)|| = dist(x, W).

2. A minimum principle

In this section, we formulate a simple minimum principle which we will use later
for the construction of retractions. The next proposition is probably known but we
were not able to find references.

Define

G ={geC'[0,1]: g(0) =y, g(1) =1},
:G-C0,1]; P(g)=(9—1)~L(g—1),

where y and L>0 are fixed constants.

Proposition 1.

L=yl
=||®
=12l

inf{||®(g)[|: g G} =

where the norm is the usual supremum norm and

! L(1 —y
glt) =14€ /0e‘L‘Yil(_e/L)ds—&—(y—l)}:l—i-

(1 =) (=D —1)
l1—etL '

Proof. Set &(g) = v, then

o~ 1=e| [ ePusdst o)

and since g(1) = 1 we get
1
/ e Bu(s)ds=1-7.
0

If the function v has to be constant, say v*, then
1

u*z(l—y)[/ol e_L‘Yds} :%.
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We now have for any ge G

1 L 1—eL
1sl< [ e Plellds = o)l -
0
so that
LiT -] _
o) =T = a@). O

3. Construction of a retraction

Now we describe a general method of construction of a retraction, the origin of
which is in [B-G]. In Proposition 1 assume that y<1, and let g be the corresponding
function obtained with the minimum principle.

Proposition 2. Let T: B(X)— B(X) be a map in ¥ (L). Suppose that there exists a
Sfunction d : [0, 1] > R such that

[ = Tx[|=d(]|x]])

for any xe B(X).
Define, for xe B(X)

Ax = x = (1= g([|x[]) Tx,
then (trivially) Ax = x for xe S(X) and moreover
(i) For any xe B(X)
|| Ax[| =M,
where

M = min max[t — 1+ g(2),d(t) — g(1)].

0<r<1

(i) Ae L(C) where

L(1 —y)

=1 .
C +1—e*L

(iii) If M >0 then Rx = HﬁH defines a lipschitz retraction of B(X) onto S(X) in £(Q),
where

0 () L),

0= M(1+1—€L (1)
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Proof. Condition (i) is easily proved, in fact we have
[ Ax][Z{[x]] = T+ g([[x]])
and
[ Ax][=|x = Tex|| = g([[x])) = d([|x]]) = g([[x]])
and thus
|| 4[| max[||x]| = 1+ g(llxI]), d(l]x]]) = g(lIxI])]
> min maxlt — 1 + 3(e),d(1) - §(1)].

0<r<l1

To prove (ii) first note that, since y<1, § is a positive, increasing function.
Therefore the inequality

19(a) = §(b)|<[b — a|g'(max(a, b))
holds. The Lipschitz constant of 4 can be evaluated as follows:
Ax — Ay = (x —y) = (1 = g([Ix[)(Tx = Ty) + Ty(g(|1xI) — a(lyl),
we have
| 4x — Ayl|<|lx =yl + (1= g(IxIDLl[x = yI[ + 1g([[x]]) — g(Iy D]
and also similarly
[l 4x — Ay[[<[lx =yl + (1 = g(UYINLIx = yll + 1g([1x]]) = g(IyI)]-
These two inequalities imply that
l4x — Ayl < [lx = yI[ + 1g([[x]]) — g([yID]
+ Ll}x = ylImin(1 = g([[x][), 1 = g(|ly[))
=[x =yl + gD = gy DI+ Lllx = pII(1 = max(g([[x]]), g(lly]))
=l =yl + 1g(Ixll) = gy DI + Lllx = y[I(1 = g(max(||x]], [[v]])))
< =yl X[ = [1y[[1g" (max([[x]], [|y1])
+ Lifx = yI(1 = g(max(||x]], [y[)))

_ o L(1 —y)
<l =yl max [1+g'(1) + L - Ly(1)] = (Hﬁ)llx—yll-

Finally for (iii) we have:

1= ot == | = [+ (57) - 2o (55) <" -
<M (1 HL ey,

Pr and h(X) being, respectively, the radial projection and constant. [
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4. The case Yy (k) =1—-1/k

Once the optimal choice of the function g is made, one has to work to
obtain a good estimate of the constant M with a careful choice of the map T
and of the function d. Here is a simple way: let 7: B(X) - B(X) be a map in (k)
such that ||x — Tx|| =y y (k) — ¢ for any xe B(X). By the arbitrariness of ¢, we can
choose

M = min max[t — 1 +§(1), ¥y (k) — g(1)].

0<r<1

Since the knowledge of the function i, is “very poor” especially for lower
bounds, this estimate is not very useful with the only exception of the extreme case,
that is when Yy (k) =1 — 1/k. It is known that, for example, the spaces ¢y and
Cla, b] have this property.

Assume now that y<1 — 5 if Yy (k) = 1 — 1/k we obtain:

i g I
M = min max(t =1+ (0,1~ 1/k = g(0)] =5 = 3.

where 6 = d(k,y) is the unique solution in (0, 1) of the equation:
t—14g(t)=1-1/k—g(r).
Theorem 2. Suppose that X is a space such that yy(k)=1—1/k and let R be

as in Proposition 2. Then R is a Lipschitz retraction of B(X) onto S(X) in #(Q),
where

2Uh(X) (. k(1 —7)
0= T5—1 <1+ 1—ek)'

Noting that A(X)<2, we can evaluate the expression of Q. A numerical
minimization on the parameters k and y gives

ko(X)<30.84

(30.8322 for k = 5.81,7 = 0.46).

This result improves the result in [B-G] for the general case Y y(k)=1-—
1/k (ko(X)<37.74) and the result in [B3] where it is proved that ky(co)<35.18;
however it does not improve the result in [G2] where it is proved that
ko(CI0, 1])<23.31.

Remark. We do not know if ¥, (k) =1— 1/k implies #(X) =2. We recall that
h(ly) =2 and ¥, (k) <1 — 1/k (see [B1]).
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5. The case of /;

As we have recalled in the last remark the space /; does not fit in our Theorem 1.
In fact the function s is unknown for this space. In [B1] it is shown that

B=2V2)(k—1) if 1<k<2+ V2,

‘//ll(k)>{
1-2/k if 24+v2<k

(for an upper bound see [G-K]).
In [B1], using the map defined below, it is proved that ko (/;) <31.64.
Using the same map we improve this estimation.
Let us define 7' : B(l;) — B(/}) by

Tix = Ti(x1,x2,x3, ...) = (|x1], |x2], [x3], --)
and T>: T\ (B(l))— ST () (here ST()) = {xeS(/1): x;=0}) by

Tox = TQ(X17X2,)C3, ) = (|X1| +1-— ||X||,|XQ|, ‘X3|, ),

assuming that k>1, for any xeS™(/;) there exists a maximal index iy(x) for
which

i Xj>1/k

J=io(x)

and there exists a unique u(x)€(0,1) such that

pXw + Y, X =1/k

J=io(x)+1

The map 75: St (/;)—> S*(/}) is then defined by

T3x = T3(x17x2;x37 ) = k(07 "'707”(x)xio(x)7xi()(x)+l7 )a

where 0 appears ip(x) times.

Proposition 3. Let T = T50T5°T), then T € ¥ (2k) and for xe B(l\) we have:

|| Tx — x|| =1+ ||x]| — 2/k.
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Proof. The proof that Te #(2k) is in [G-K]. Let xe B and set x’ = 7,7 x then

io(x') 0o

1Tx = x|l = > byl + ku(x) x| = xoeyal + Y Ikl =]

J=1 J=io(x')+1

io(x')

Z 1] + kgt () |3,y | = 1)1

0 0
+hko> 0 = Y Il
J=io(x)+1 J=io(¥)+1
0 o0 o0
=[xl = Y il Y gl=llwl =2 Y0l
J=io(x")+1 J=io(x")+1 J=io(x")+1

>14|x||-2/k. O

Since for xe B(/;) we have ||Tx|| = 1 we obtain
1Tx = x[[Z || Tx]| = []x|l = 1 = |x]]

and so

[1Tx = x|[Zmax (1 — [|x]], 1 + [|x]| - 2/k).

Thus for the function d in Proposition 2 we can use the function: d(f) =
max(1 —¢,1 4+ ¢—2/k) and so we obtain:

M = M(k,y) = min max[t—1+g(t),1 —t—g(t),1 +1—2/k—g(1)].

0<t<l1

Replacing in formula (1) M with the above expression and /(X)) with 2 we obtain
a retraction with Lipschitz constant:

2 2k(1 — )
M(k,w(” l—e—2k>‘

A numerical minimization on the parameters k and y gives

k()(ll) <22.45

(22.44850 for k = 2.857, y = 0.061).
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6. The case of Hilbert space
As in the case of /;, in the Hilbert space L*[0, 1] we will work with a particular map

T, (see [B2]). Let feL? = L*[0,1], k=>1; Ty : L* - S(L?) is defined by

L+k[f(2r)] if 0<e<i(f),
(T f)(1) =

0 if 1(f)<t<1,

where 7( f) is the unique solution in [0, 1] of the equation:
t
/)U+Mﬂmfﬁ:L
0

Proposition 4. The map T, has the following properties:
(i) For every f,geL?,

Ty f = Tugll® <2k f — gl
(ii) For every feL?* and every real number o

1/ ol fI 2 + 117 - 22

Proof. To prove (i) let f, ge L? and suppose #(f)<t(g). Then

. , , [ )
an—nm|:A Wf—km>+/¢ (1 + Klg))
t o

t(f) t(f)
L/ <Mﬂ—kmf+1—/ (1 + Klg])?
0

5 t(f) 5 t(f) 5
A (k|| - km>+A U+Hﬂ)—A (1 + Klg))

2kzlfl = 2K%| f1lg| + 2k(1.f1 = lg])

I
N

i)
:/ k(L1 = Igl)(1+k\f|)<2k/ |/ = gl(1 +&|f1)
0 0

1/2

() V2o
<2k</0 If—g|2> (/0 (1+k|f|)2) <2k f = gll.
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(ii) Let fe L? then
1(f) 1
—oT 2: _ _ k 2+ 2
Ir=arif P = [ rama e [

) /zm (f2 + + 2If> = 2af — 2ukf| f] + 2%k f])
0

TG

t(f) t(f)
— AP + / (1 4+ K 1 2K|f) — / 22 1 2f1/)

t(f)
> IfIR + 22 /0 (4 kIS = 1o / Q1f1 + 247?)

24

1(f)
SUSP+2 =l [ @+ 22+ o =22

The last inequality is true because

t(f) t(f)
1:z<f>+zk/0 |f\+k2/0 P

from which

_ 1 f) 1 f)
2jkz2] k’<f>:4/ a2k [P B
0 0

Remark. In [B2] it is proved that ||T,f — Tig||><k||f — g|]* + 2k(k + D)||f — ¢]|
and that ||T) f/ — f||*> (1 — 1/k)*.

The above described map is not a Lipschitzian map. In order to proceed we will
use a technique introduced in [K-W]: first we restrict the map to a special subset W of
B(L2[0,1]) where the map is Lipschitzian, then we extend this restriction to the whole
space using the Kirzbraun extension theorem. We will make a better choice of the
subset W than in [K-W] (see also the same method in [B2,G-K]). In fact we will use
the following theorem:

Theorem 3 (Klee [KI]). Let & be an infinite cardinal number for which & = ¢. Then
2(&) contains a \/2-dispersed proximinal set W such that inf{||x — w||: we W} <1 for
all xel?(¢&).

Choose ¢>0 and consider in /?(¢) the set W = ¢W. Obviously if x,ye W we have:

[lx = yl|>ev2
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and for every x there exists a ze W such that
x — 2l| <e.
We embed L?[0, 1] in /2(¢) as a closed subspace and we denote by P the orthogonal

projection onto it. If 7, = TP then T, has properties (i) and (ii) of Proposition 4.
Indeed we have

15 — Toy|[* <2K||Px — Py|<2kl[x — ¥

and

|Ix — aTox||* =||x — Px + Px — oT, Px||* = ||x — Px||* + ||Px — aT} Px||*

> [l = Pl + o2 + [P~ 2 = o P -

2|
k-

Call now T3 the restriction of T, to W. Then T3 ¥ (\/\/_k) Indeed if x, ye W we
have

2k||x —y 2 V2k
75— Toll< v/ =TT < 22— M.

Using the Kirzbraum theorem (see [Ki]) we extend T3 to all /2(¢) keeping the same
Lipschitz constant, we shall call this extension T,. Notice that 7, takes values in
co(T5(B(P(y)))) =co(S(L*0,1])) = B(L?[0, 1]). Finally denote by T the restriction
of T, to L?. Obviously, T is a map from L?[0,1] to B(L?*[0,1]) belonging to

(\/‘/_k) Now we take xe B(L?). We evaluate directly

Ax = x — (1= g(||x[])) Tx

Choose ze W such that ||x — z||<g; note that ze W implies ||T4z|| = 1. So we
have:

[l Ax(| =[] = (1= g([IxIN) Txll = [l = (1 = g([Ix[))(Tax — Taz + Taz)|
= (1= gD Tazl] = [Ix[] = (1= g([[xI D) Tax — Taz]]

= (L= g(lIx() =[xl = (1 = g([Ix[])) fkll 2|

> (1= g(IIxI)(1 =/ vV2ke) — |Ix]|.
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We also have
[1AX[| = |lx = (1 = g([[x]])) Tax]]
=llz=(z=x) = (1 = g(lIx)) Taz — (1 = g(|IxID)(Tax — Taz)]|

> |1z = (1= (X)) Tz = [lx = 2l = (1 = g(|Ix[D) | Tax — Taz|]

> Iz + (=gt 2220 1 gy Ve

and since

[12l1Z[1x]] =[]z = x| = [[x]] &,

assuming ||x|| >¢ we obtain

|| J<||x| o (1 - gey? - 2D

— &= (1= g(lIxI))V V2ke.

The preceding inequality gives

[|Ax|| =M (k,7p,¢e) = rr}(i)t}] max(d, (t),d> (1)),
telo,

where

di(1) = (1= g(1))(1 = \/ V2ke) — 1

and

dy (1) if 0<r<e,

—e— (1 —=g(t))VV2ke if e<t<1.
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Consider now formula (1) with A(X) =1, L= @M(k,y,e), choosing the
values: k = 2.25, ¢ = 0.029, y = —0.53, we obtain the estimate:

ko(L?[0,1]) <28.99.
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