

Available online at www.sciencedirect.com

JOURNAL OF
Approximation
Theory

Journal of Approximation Theory 120 (2003) 296-308

http://www.elsevier.com/locate/jat

The retraction constant in some Banach spaces

Marco Baronti, a,* Emanuele Casini, b and Carlo Franchettic

^a Dimet, Università degli Studi di Genova, Piazzale Kennedy, Genova 16129, Italy ^b Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Università degli Studi dell'Insubria, Via Valleggio 5, Como 22100, Italy

Received 16 November 2001; accepted in revised form 18 October 2002

Abstract

We give new sharper estimations for the retraction constant in some Banach spaces. © 2002 Elsevier Science (USA). All rights reserved.

Keywords: Retractions; Lipschitz maps; Minimal displacement

1. Introduction and notations

It is well known that Brouwer's fixed point theorem has the following equivalent form: If X is a finite-dimensional Banach space then there is no continuous retraction from the closed unit ball B(X) onto the unit sphere S(X) (R is a retraction if Rx = x for all $x \in S(X)$). After some partial results (see [G-K] for an optimal list of references), Benyamini and Sternfeld solved completely the problem of existence of Lipschitzian retractions in the infinite-dimensional case by proving the following result:

Theorem 1 (Benyamini and Sternfeld [B-S]). There exists an universal constant \mathcal{K} such that for every infinite-dimensional Banach space X there exists a Lipschitzian retraction R from the unit ball B(X) onto the unit sphere S(X) with Lipschitz constant less than \mathcal{K} .

^c Dipartimento di Matematica Applicata, Università degli Studi di Firenze, Via di S. Marta 3, Firenze 50139, Italy

^{*}Corresponding author.

E-mail addresses: baronti@dimet.unige.it (M. Baronti), emanuele.casini@uninsubria.it (E. Casini), franchetti@dma.unifi.it (C. Franchetti).

This theorem suggests some quantitative problems. First of all it seems that no significant lower and no upper bound for the best constant \mathcal{K} that appears in Theorem 1 is known. Given an infinite-dimensional Banach space X, the retraction constant $k_0(X)$ is defined as the infimum of such k for which there exists a retraction $R: B(X) \to S(X)$ in $\mathcal{L}(k)$, where $\mathcal{L}(k)$ is the class of Lipschitz maps with constant k. The only general result states that (see [G-K]): $k_0(X) \geqslant 3$ for every space X. Some estimations of $k_0(X)$ for some classical Banach space are available in the literature. Here is a list of known results:

$$4 \le k_0(l_1) < 31.64$$
 (see [B1]),
 $k_0(c_0) < 35.18$ (see [B3]),
 $k_0(L^1[0,1]) < 9.43$ (see [G – K]),
 $k_0(C([a,b])) < 23.31$ (see [G2]),
 $4.55 < k_0(H) < 64.25$ (see [G – K, K – W]).

The aim of this paper is to improve the known upper bounds for the retraction constant $k_0(X)$ in some classical Banach spaces.

Let X be an infinite-dimensional Banach space X. For any $T: B(X) \to B(X)$ the minimal displacement η_T of T is defined by

$$\eta_T = \inf\{||x - Tx||: x \in B(X)\}.$$

The minimal displacement characteristic of X is

$$\psi_X(k) = \sup_{T \in \mathcal{L}(k)} \eta_T.$$

This function, for k > 1, satisfies

$$0 < \psi_X(k) \leqslant 1 - \frac{1}{k}.$$

The study of this function started in [G1] where the upper bound is proved while the positiveness of ψ_X is a consequence of the Benyamini–Sternfeld result. This and other properties of the minimal displacement characteristic can be found in the book of Kirk and Goebel [G-K] (see also [B1,B2]). We recall the definition of the radial projection P_R from a Banach space X onto its unit ball B(X):

$$P_R(x) = \begin{cases} x & \text{if } ||x|| \leq 1, \\ x/||x|| & \text{if } 1 < ||x||. \end{cases}$$

 P_R is a Lipschitz function on X. The best Lipschitz constant for P_R is denoted by h(X) and is called the radial constant of the space X. It is easily seen that $1 \le h(X) \le 2$. It is also known that if dim X > 2, X is a Hilbert space if and only if h(X) = 1. The exact values of h(X) in L_p spaces are given in [F].

Note the following useful fact: for elements $x, y \in X$, if ||x||, $||y|| \ge r > 0$ we have (see for e.g. [B-G])

$$\left| \left| \frac{x}{||x||} - \frac{y}{||y||} \right| \right| = \left| \left| P_R \left(\frac{x}{r} \right) - P_R \left(\frac{y}{r} \right) \right| \right| \leqslant \frac{h(X)}{r} ||x - y||.$$

A subset W, with at least two points, of a normed space X is δ -dispersed if $||x-y|| > \delta$ for each pair x,y of distinct points of W. A subset W of a normed space X is proximinal if for each $x \in X$ there exists an element $w(x) \in W$ such that $||x-w(x)|| = \operatorname{dist}(x, W)$.

2. A minimum principle

In this section, we formulate a simple minimum principle which we will use later for the construction of retractions. The next proposition is probably known but we were not able to find references.

Define

$$G = \{ g \in C^1[0, 1] : g(0) = \gamma, \ g(1) = 1 \},$$

$$\Phi : G \to C[0, 1]; \quad \Phi(g) = (g - 1)' - L(g - 1),$$

where γ and L>0 are fixed constants.

Proposition 1.

$$\inf\{||\Phi(g)||: g \in G\} = \frac{L|1-\gamma|}{1-e^{-L}} = ||\Phi(\bar{g})||,$$

where the norm is the usual supremum norm and

$$\bar{g}(t) = 1 + e^{Lt} \left[\int_0^t e^{-Ls} \frac{L(1-\gamma)}{1 - e^{-L}} ds + (\gamma - 1) \right] = 1 + \frac{(1-\gamma)(e^{L(t-1)} - 1)}{1 - e^{-L}}.$$

Proof. Set $\Phi(g) = v$, then

$$g(t) - 1 = e^{Lt} \left[\int_0^t e^{-Ls} v(s) \, ds + (\gamma - 1) \right]$$

and since q(1) = 1 we get

$$\int_0^1 e^{-Ls}v(s)\,ds=1-\gamma.$$

If the function v has to be constant, say v^* , then

$$v^* = (1 - \gamma) \left[\int_0^1 e^{-Ls} ds \right]^{-1} = \frac{L(1 - \gamma)}{1 - e^{-L}}.$$

We now have for any $g \in G$

$$|1 - \gamma| \le \int_0^1 e^{-Ls} ||v|| ds = ||\Phi(g)|| \frac{1 - e^{-L}}{L}$$

so that

$$||\Phi(g)|| \geqslant \frac{L|1-\gamma|}{1-e^{-L}} = ||\Phi(\bar{g})||.$$

3. Construction of a retraction

Now we describe a general method of construction of a retraction, the origin of which is in [B-G]. In Proposition 1 assume that $\gamma < 1$, and let \bar{g} be the corresponding function obtained with the minimum principle.

Proposition 2. Let $T: B(X) \to B(X)$ be a map in $\mathcal{L}(L)$. Suppose that there exists a function $d: [0, 1] \to R$ such that

$$||x - Tx|| \geqslant d(||x||)$$

for any $x \in B(X)$.

Define, for $x \in B(X)$

$$Ax = x - (1 - \bar{q}(||x||)) Tx,$$

then (trivially) Ax = x for $x \in S(X)$ and moreover

(i) For any $x \in B(X)$

$$||Ax|| \geqslant M$$

where

$$M = \min_{0 \le t \le 1} \max[t - 1 + \bar{g}(t), d(t) - \bar{g}(t)].$$

(ii) $A \in \mathcal{L}(C)$ where

$$C = 1 + \frac{L(1 - \gamma)}{1 - e^{-L}}.$$

(iii) If M > 0 then $Rx = \frac{Ax}{\|Ax\|}$ defines a lipschitz retraction of B(X) onto S(X) in $\mathcal{L}(Q)$, where

$$Q = \frac{h(X)}{M} \left(1 + \frac{L(1-\gamma)}{1 - e^{-L}} \right). \tag{1}$$

Proof. Condition (i) is easily proved, in fact we have

$$||Ax|| \ge ||x|| - 1 + \bar{g}(||x||)$$

and

$$||Ax|| \ge ||x - Tx|| - \bar{g}(||x||) \ge d(||x||) - \bar{g}(||x||)$$

and thus

$$||Ax|| \ge \max[||x|| - 1 + \bar{g}(||x||), d(||x||) - \bar{g}(||x||)]$$

 $\ge \min_{0 \le t \le 1} \max[t - 1 + \bar{g}(t), d(t) - \bar{g}(t)].$

To prove (ii) first note that, since $\gamma < 1$, \bar{g}' is a positive, increasing function. Therefore the inequality

$$|\bar{g}(a) - \bar{g}(b)| \leq |b - a|\bar{g}'(\max(a, b))|$$

holds. The Lipschitz constant of A can be evaluated as follows:

$$Ax - Ay = (x - y) - (1 - \bar{g}(||x||)(Tx - Ty) + Ty(\bar{g}(||x||) - \bar{g}(||y||)),$$

we have

$$||Ax - Ay|| \le ||x - y|| + (1 - \bar{g}(||x||)L||x - y|| + |\bar{g}(||x||) - \bar{g}(||y||)|$$

and also similarly

$$||Ax - Ay|| \le ||x - y|| + (1 - \bar{g}(||y||)L||x - y|| + |\bar{g}(||x||) - \bar{g}(||y||)|.$$

These two inequalities imply that

$$\begin{split} ||Ax - Ay|| &\leqslant ||x - y|| + |\bar{g}(||x||) - \bar{g}(||y||)| \\ &+ L||x - y||\min(1 - \bar{g}(||x||), 1 - \bar{g}(||y||)) \\ &= ||x - y|| + |\bar{g}(||x||) - \bar{g}(||y||)| + L||x - y||(1 - \max(\bar{g}(||x||), \bar{g}(||y||))) \\ &= ||x - y|| + |\bar{g}(||x||) - \bar{g}(||y||)| + L||x - y||(1 - \bar{g}(\max(||x||, ||y||))) \\ &\leqslant ||x - y|| + |||x|| - ||y|||\bar{g}'(\max(||x||, ||y||)) \\ &+ L||x - y||(1 - \bar{g}(\max(||x||, ||y||))) \\ &\leqslant ||x - y|| \max_{0 \le t \le 1} \left[1 + \bar{g}'(t) + L - L\bar{g}(t)\right] = \left(1 + \frac{L(1 - \gamma)}{1 - e^{-L}}\right) ||x - y||. \end{split}$$

Finally for (iii) we have:

$$||Rx - Ry|| = \left| \left| \frac{Ax}{||Ax||} - \frac{Ay}{||Ay||} \right| = \left| \left| P_R \left(\frac{Ax}{M} \right) - P_R \left(\frac{Ay}{M} \right) \right| \right| \le \frac{h(X)}{M} ||Ax - Ay||$$

$$\le \frac{h(X)}{M} \left(1 + \frac{L(1 - \gamma)}{1 - e^{-L}} \right) ||x - y||,$$

 P_R and h(X) being, respectively, the radial projection and constant. \square

4. The case $\psi_{X}(k) = 1 - 1/k$

Once the optimal choice of the function \bar{g} is made, one has to work to obtain a good estimate of the constant M with a careful choice of the map T and of the function d. Here is a simple way: let $T: B(X) \to B(X)$ be a map in $\mathcal{L}(k)$ such that $||x - Tx|| \ge \psi_X(k) - \varepsilon$ for any $x \in B(X)$. By the arbitrariness of ε , we can choose

$$M = \min_{0 \le t \le 1} \max[t - 1 + \bar{g}(t), \psi_X(k) - \bar{g}(t)].$$

Since the knowledge of the function ψ_X is "very poor" especially for lower bounds, this estimate is not very useful with the only exception of the extreme case, that is when $\psi_X(k) = 1 - 1/k$. It is known that, for example, the spaces c_0 and C[a,b] have this property.

Assume now that $\gamma < 1 - \frac{1}{2k}$; if $\psi_X(k) = 1 - 1/k$ we obtain:

$$M = \min_{0 \le t \le 1} \max[t - 1 + \bar{g}(t), 1 - 1/k - \bar{g}(t)] = \frac{\delta}{2} - \frac{1}{2k},$$

where $\delta = \delta(k, \gamma)$ is the unique solution in (0, 1) of the equation:

$$t - 1 + \bar{g}(t) = 1 - 1/k - \bar{g}(t).$$

Theorem 2. Suppose that X is a space such that $\psi_X(k) = 1 - 1/k$ and let R be as in Proposition 2. Then R is a Lipschitz retraction of B(X) onto S(X) in $\mathcal{L}(Q)$, where

$$Q = \frac{2kh(X)}{k\delta - 1} \left(1 + \frac{k(1 - \gamma)}{1 - e^{-k}} \right).$$

Noting that $h(X) \le 2$, we can evaluate the expression of Q. A numerical minimization on the parameters k and γ gives

$$k_0(X) < 30.84$$

 $(30.8322 \text{ for } k = 5.81, \gamma = 0.46).$

This result improves the result in [B-G] for the general case $\psi_X(k) = 1 - 1/k$ ($k_0(X) \le 37.74$) and the result in [B3] where it is proved that $k_0(c_0) \le 35.18$; however it does not improve the result in [G2] where it is proved that $k_0(C[0,1]) \le 23.31$.

Remark. We do not know if $\psi_X(k) = 1 - 1/k$ implies h(X) = 2. We recall that $h(l_1) = 2$ and $\psi_{l_1}(k) < 1 - 1/k$ (see [B1]).

5. The case of l_1

As we have recalled in the last remark the space l_1 does not fit in our Theorem 1. In fact the function ψ is unknown for this space. In [B1] it is shown that

$$\psi_{l_1}(k)\!\geqslant\!\left\{ \begin{aligned} (3-2\sqrt{2})(k-1) & \text{if } 1\!\leqslant\! k\!\leqslant\! 2+\sqrt{2},\\ 1-2/k & \text{if } 2+\sqrt{2}\!<\! k \end{aligned} \right.$$

(for an upper bound see [G-K]).

In [B1], using the map defined below, it is proved that $k_0(l_1) < 31.64$.

Using the same map we improve this estimation.

Let us define $T_1: B(l_1) \rightarrow B(l_1)$ by

$$T_1x = T_1(x_1, x_2, x_3, \dots) = (|x_1|, |x_2|, |x_3|, \dots)$$

and
$$T_2: T_1(B(l_1)) \to S^+(l_1)$$
 (here $S^+(l_1) = \{x \in S(l_1): x_i \ge 0\}$) by

$$T_2x = T_2(x_1, x_2, x_3, \dots) = (|x_1| + 1 - ||x||, |x_2|, |x_3|, \dots);$$

assuming that k>1, for any $x \in S^+(l_1)$ there exists a maximal index $i_0(x)$ for which

$$\sum_{j=i_0(x)}^{\infty} x_j > 1/k$$

and there exists a unique $\mu(x) \in [0, 1)$ such that

$$\mu(x)x_{i_0(x)} + \sum_{j=i_0(x)+1}^{\infty} x_j = 1/k.$$

The map $T_3: S^+(l_1) \rightarrow S^+(l_1)$ is then defined by

$$T_3x = T_3(x_1, x_2, x_3, \dots) = k(0, \dots, 0, \mu(x)x_{i_0(x)}, x_{i_0(x)+1}, \dots),$$

where 0 appears $i_0(x)$ times.

Proposition 3. Let $T = T_3 \circ T_2 \circ T_1$, then $T \in \mathcal{L}(2k)$ and for $x \in B(l_1)$ we have:

$$||Tx - x|| \ge 1 + ||x|| - 2/k$$
.

Proof. The proof that $T \in \mathcal{L}(2k)$ is in [G-K]. Let $x \in B$ and set $x' = T_2 T_1 x$ then

$$\begin{split} ||Tx - x|| &= \sum_{j=1}^{i_0(x')} |x_j| + |k\mu(x)|x_{i_0(x')}| - x_{i_0(x')+1}| + \sum_{j=i_0(x')+1}^{\infty} |k|x_j| - x_{j+1}| \\ \geqslant \sum_{j=1}^{i_0(x')} |x_j| + k\mu(x)|x_{i_0(x')}| - |x_{i_0(x')+1}| \\ &+ k \sum_{j=i_0(x')+1}^{\infty} |x_j| - \sum_{j=i_0(x')+1}^{\infty} |x_{j+1}| \\ &= ||x|| - \sum_{j=i_0(x')+1}^{\infty} |x_j| + 1 - \sum_{j=i_0(x')+1}^{\infty} |x_j| = 1 + ||x|| - 2 \sum_{j=i_0(x')+1}^{\infty} |x_j| \\ \geqslant 1 + ||x|| - 2/k. \quad \Box \end{split}$$

Since for $x \in B(l_1)$ we have ||Tx|| = 1 we obtain

$$||Tx - x|| \ge ||Tx|| - ||x|| = 1 - ||x||$$

and so

$$||Tx - x|| \ge \max(1 - ||x||, 1 + ||x|| - 2/k).$$

Thus for the function d in Proposition 2 we can use the function: $d(t) = \max(1-t, 1+t-2/k)$ and so we obtain:

$$M = M(k, \gamma) = \min_{0 \le t \le 1} \max[t - 1 + \bar{g}(t), 1 - t - \bar{g}(t), 1 + t - 2/k - \bar{g}(t)].$$

Replacing in formula (1) M with the above expression and h(X) with 2 we obtain a retraction with Lipschitz constant:

$$\frac{2}{M(k,\gamma)} \left(1 + \frac{2k(1-\gamma)}{1-e^{-2k}} \right).$$

A numerical minimization on the parameters k and γ gives

$$k_0(l_1) < 22.45$$

$$(22.44850 \text{ for } k = 2.857, \gamma = 0.061).$$

6. The case of Hilbert space

As in the case of l_1 , in the Hilbert space $L^2[0,1]$ we will work with a particular map T_1 (see [B2]). Let $f \in L^2 = L^2[0,1]$, $k \ge 1$; $T_1: L^2 \to S(L^2)$ is defined by

$$(T_1 f)(t) = \begin{cases} 1 + k|f(t)| & \text{if } 0 \le t \le t(f), \\ 0 & \text{if } t(f) < t \le 1, \end{cases}$$

where t(f) is the unique solution in [0,1] of the equation:

$$\int_0^t (1+k|f(s)|)^2 ds = 1.$$

Proposition 4. The map T_1 has the following properties:

(i) For every $f, g \in L^2$,

$$||T_1f - T_1g||^2 \le 2k||f - g||.$$

(ii) For every $f \in L^2$ and every real number α ,

$$||f - \alpha T_1 f||^2 \geqslant \alpha^2 + ||f||^2 - \frac{2|\alpha|}{k}$$

Proof. To prove (i) let $f, g \in L^2$ and suppose $t(f) \le t(g)$. Then

$$\begin{aligned} ||T_{1}f - T_{1}g||^{2} &= \int_{0}^{t(f)} (k|f| - k|g|)^{2} + \int_{t(f)}^{t(g)} (1 + k|g|)^{2} \\ &= \int_{0}^{t(f)} (k|f| - k|g|)^{2} + 1 - \int_{0}^{t(f)} (1 + k|g|)^{2} \\ &= \int_{0}^{t(f)} (k|f| - k|g|)^{2} + \int_{0}^{t(f)} (1 + k|f|)^{2} - \int_{0}^{t(f)} (1 + k|g|)^{2} \\ &= \int_{0}^{t(f)} (2k^{2}|f|^{2} - 2k^{2}|f||g| + 2k(|f| - |g|)) \\ &= \int_{0}^{t(f)} 2k(|f| - |g|)(1 + k|f|) \leq 2k \int_{0}^{t(f)} |f - g|(1 + k|f|) \\ &\leq 2k \left(\int_{0}^{t(f)} |f - g|^{2} \right)^{1/2} \left(\int_{0}^{t(f)} (1 + k|f|)^{2} \right)^{1/2} \leq 2k||f - g||. \end{aligned}$$

(ii) Let $f \in L^2$ then

$$\begin{aligned} ||f - \alpha T_1 f||^2 &= \int_0^{t(f)} (f - \alpha - \alpha k |f|)^2 + \int_{t(f)}^1 f^2 \\ &= \int_0^{t(f)} (f^2 + \alpha^2 + \alpha^2 k^2 f^2 - 2\alpha f - 2\alpha k f |f| + 2\alpha^2 k |f|) \\ &+ ||f||^2 - \int_0^{t(f)} f^2 \\ &= ||f||^2 + \int_0^{t(f)} \alpha^2 (1 + k^2 f^2 + 2k |f|) - \int_0^{t(f)} \alpha (2f + 2k f |f|) \\ &\geqslant ||f||^2 + \alpha^2 \int_0^{t(f)} (1 + k |f|)^2 - |\alpha| \int_0^{t(f)} (2|f| + 2k f^2) \\ &\geqslant ||f||^2 + \alpha^2 - |\alpha| \int_0^{t(f)} (4|f| + 2k f^2) \geqslant ||f||^2 + \alpha^2 - \frac{2|\alpha|}{k}. \end{aligned}$$

The last inequality is true because

$$1 = t(f) + 2k \int_0^{t(f)} |f| + k^2 \int_0^{t(f)} |f|^2$$

from which

$$2/k \geqslant 2 \frac{1 - t(f)}{k} = 4 \int_0^{t(f)} |f| + 2k \int_0^{t(f)} |f|^2.$$

Remark. In [B2] it is proved that $||T_1f - T_1g||^2 \le k^2||f - g||^2 + 2k(k+1)||f - g||$ and that $||T_1f - f||^2 \ge (1 - 1/k)^2$.

The above described map is not a Lipschitzian map. In order to proceed we will use a technique introduced in [K-W]: first we restrict the map to a special subset \tilde{W} of $B(L^2[0,1])$ where the map is Lipschitzian, then we extend this restriction to the whole space using the Kirzbraun extension theorem. We will make a better choice of the subset \tilde{W} than in [K-W] (see also the same method in [B2,G-K]). In fact we will use the following theorem:

Theorem 3 (Klee [K1]). Let ξ be an infinite cardinal number for which $\xi^{\aleph_0} = \xi$. Then $l^2(\xi)$ contains a $\sqrt{2}$ -dispersed proximinal set \tilde{W} such that $\inf\{||x-w||: w \in \tilde{W}\} \leq 1$ for all $x \in l^2(\xi)$.

Choose $\varepsilon > 0$ and consider in $l^2(\xi)$ the set $W = \varepsilon \tilde{W}$. Obviously if $x, y \in W$ we have:

$$||x-y|| > \varepsilon\sqrt{2}$$

and for every x there exists a $z \in W$ such that

$$||x-z|| \leq \varepsilon$$
.

We embed $L^2[0,1]$ in $l^2(\xi)$ as a closed subspace and we denote by P the orthogonal projection onto it. If $T_2 = T_1 P$ then T_2 has properties (i) and (ii) of Proposition 4. Indeed we have

$$||T_2x - T_2y||^2 \le 2k||Px - Py|| \le 2k||x - y||$$

and

$$||x - \alpha T_2 x||^2 = ||x - Px + Px - \alpha T_1 Px||^2 = ||x - Px||^2 + ||Px - \alpha T_1 Px||^2$$
$$\geqslant ||x - Px||^2 + \alpha^2 + ||Px||^2 - \frac{2|\alpha|}{k} = \alpha^2 + ||x||^2 - \frac{2|\alpha|}{k}.$$

Call now T_3 the restriction of T_2 to W. Then $T_3 \in \mathcal{L}(\sqrt{\frac{\sqrt{2}k}{\epsilon}})$. Indeed if $x, y \in W$ we have

$$||T_3x - T_3y|| \le \sqrt{2k||x - y||} < \sqrt{\frac{2k||x - y||^2}{\sqrt{2}\varepsilon}} = \sqrt{\frac{\sqrt{2}k}{\varepsilon}}||x - y||.$$

Using the Kirzbraum theorem (see [Ki]) we extend T_3 to all $l^2(\xi)$ keeping the same Lipschitz constant, we shall call this extension T_4 . Notice that T_4 takes values in $\overline{co}(T_3(B(l^2(\gamma)))) \subset \overline{co}(S(L^2[0,1])) = B(L^2[0,1])$. Finally denote by T the restriction of T_4 to L^2 . Obviously, T is a map from $L^2[0,1]$ to $B(L^2[0,1])$ belonging to $\mathcal{L}(\sqrt{\frac{\sqrt{2}k}{\varepsilon}})$. Now we take $x \in B(L^2)$. We evaluate directly

$$Ax = x - (1 - \bar{g}(||x||))Tx.$$

Choose $z \in W$ such that $||x - z|| \le \varepsilon$; note that $z \in W$ implies $||T_4z|| = 1$. So we have:

$$\begin{aligned} ||Ax|| &= ||x - (1 - \bar{g}(||x||))Tx|| = ||x - (1 - \bar{g}(||x||))(T_4x - T_4z + T_4z)|| \\ &\geqslant (1 - \bar{g}(||x||))||T_4z|| - ||x|| - (1 - \bar{g}(||x||))||T_4x - T_4z|| \\ &\geqslant (1 - \bar{g}(||x||)) - ||x|| - (1 - \bar{g}(||x||))\sqrt{\frac{\sqrt{2}k}{\varepsilon}}||x - z|| \\ &\geqslant (1 - \bar{g}(||x||))(1 - \sqrt{\sqrt{2}k\varepsilon}) - ||x||. \end{aligned}$$

We also have

$$\begin{split} ||Ax|| &= ||x - (1 - \bar{g}(||x||))T_4x|| \\ &= ||z - (z - x) - (1 - \bar{g}(||x||))T_4z - (1 - \bar{g}(||x||))(T_4x - T_4z)|| \\ &\geqslant ||z - (1 - \bar{g}(||x||))T_4z|| - ||x - z|| - (1 - \bar{g}(||x||))||T_4x - T_4z|| \\ &\geqslant \sqrt{||z||^2 + (1 - \bar{g}(||x||))^2 - \frac{2(1 - \bar{g}(||x||))}{k}} - \varepsilon - (1 - \bar{g}(||x||))\sqrt{\sqrt{2}k\varepsilon} \end{split}$$

and since

$$||z|| \geqslant ||x|| - ||z - x|| \geqslant ||x|| - \varepsilon,$$

assuming $||x|| > \varepsilon$ we obtain

$$||Ax|| \geqslant \sqrt{(||x|| - \varepsilon)^2 + (1 - \bar{g}(||x||))^2 - \frac{2(1 - \bar{g}(||x||))}{k}}$$
$$- \varepsilon - (1 - \bar{g}(||x||))\sqrt{\sqrt{2}k\varepsilon}.$$

The preceding inequality gives

$$||Ax|| \geqslant M(k, \gamma, \varepsilon) = \min_{t \in [0,1]} \max(d_1(t), d_2(t)),$$

where

$$d_1(t) = (1 - \bar{g}(t))(1 - \sqrt{\sqrt{2k\varepsilon}}) - t$$

and

$$d_2(t) = \begin{cases} d_1(t) & \text{if } 0 \leq t \leq \varepsilon, \\ \sqrt{(t-\varepsilon)^2 + (1-\bar{g}(t))^2 - \frac{2(1-\bar{g}(t))}{k}} \\ -\varepsilon - (1-\bar{g}(t))\sqrt{\sqrt{2}k\varepsilon} & \text{if } \varepsilon < t \leq 1. \end{cases}$$

Consider now formula (1) with h(X) = 1, $L = \sqrt{\frac{\sqrt{2}k}{\epsilon}}M(k,\gamma,\epsilon)$, choosing the values: k = 2.25, $\epsilon = 0.029$, $\gamma = -0.53$, we obtain the estimate:

$$k_0(L^2[0,1]) < 28.99.$$

References

- [B-S] Y. Benyamini, Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983) 439–445.
- [B1] K. Bolibok, Minimal dispacement and retraction problem in the space l_1 , Nonlinear Anal. Forum 3 (1998) 13–23.
- [B2] K. Bolibok, Construction of Lipschitzian mappings with non zero minimal displacement in spaces $L^1[0,1]$ and $L^2[0,1]$, Ann. Univ. Marie Curie-Sklodowska Sect. A 50 (1996) 25–31.
- [B3] K. Bolibok, Construction of Lipschitzian retraction in the space c_0 , Ann. Univ. Marie Curie-Sklodowska Sect. A 51 (1997) 43–46.
- [B-G] K. Bolibok, K. Goebel, Note on minimal displacement and retraction problems, J. Math. Anal. Appl. 206 (1997) 308–314.
- [F] C. Franchetti, The norm of the minimal projection onto hyperplanes in $L^p[0,1]$ and the radial constant, Boll. Un. Mat. It. 4 (7) (1990) 803–821.
- [G1] K. Goebel, On minimal displacement of points under lipschitzian mappings, Pacific J. Math. 48 (1973) 151–163.
- [G2] K. Goebel, A way to retract balls onto spheres, J. Nonlinear Convex Anal. 2 (2001) 47-51.
- [G-K] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
- [Ki] M.D. Kirzbraun, Über die Zussammenziehende und Lipschistsche Transformationen, Fund. Math. 22 (1934) 77–108.
- [KI] V. Klee, Do infinite-dimensional Banach spaces admit nice tilings?, Studia Scient. Math. Hungar. 21 (1986) 415–427.
- [K-W] T. Komorowski, J. Wośko, A remark on the retracting of ball onto a sphere in an infinite-dimensional Hilbert space, Math. Scand. 67 (1990) 223–226.